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SYNOPSIS

This report is based on results of tests of a large sample

of A354 and A490 bolts studied to determine their tensile behavior

when used as structural fasteners. Variables included bolt diameter,

grip length, thread length under nut, and thread lubrication. Bolts

were tested under various loadings to determine their behavior under

conditions often encountered in the field. When correctly used, these

bolts are satisfactory structural fasteners.
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1. INTRODUCTION

1.1 PURPOSE

The prime objective of this study is,the investigation of

the performance of the alloy steel structural bolt when subjected to

various conditions of installation and load. A knowledge of this be­

havior is required for the intelligent use of this bolt as a structural

fastener.

Knowledge of the tensile behavior of a bolt is important

for several reasons. First of all, this behavior affects installa­

tion practices and methods of inspection. Secondly, in a joint de­

signed to resist forces with bolt tension, information is needed to

predict the deformation and load capacities of the connection. Fin­

ally, in a friction-type joint the available frictional resistance

before the joint slips into bearing is directly controlled by the ten­

sile forces in the bolts. For these reason~ relationships must be

established to predict the tensile behavior of a bolt loaded by either

a direct axial force or by a combination of the two.

In addition to the basic tensile behavior, several other

problems deserve attention. How will an alloy steel bolt installed

with a wrench react to directly applied tensile forces? How often

can these bolts be reinstalled? Is the relationship between nut rota­

tion and bolt load significantly affected when the bolt is wrench­

tightened in an actual joint rather than in a hydraulic load cell?
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Do these bolts react any differently when tightened continuously to a

given -nut rotation than they do when tightened incrementally, as most

experimenta~ procedures require? These problems will be discussed in'

this report.

The various methods of relating internal bolt tension to a

readily observed quantity such as torque, elongation, strain in the

shank of the bolt, load cell output, and turn-of-nut are discussed in

Ref. 1, which also presents a list of studies of A325 bolts. Several

recent investigations of alloy steel bolts were reported in Refs. 2

and 3'. ~reliminary results of the present study were first reported

in Ref. 4.

1.2 TEST PROGRAM

The test program included the study of the tensile behavior

of eight lots of bolts conforming to ASTM A354-58T, grades Be and BD(5),

and eight lots conforming to the A490(6) specification for quenched and

tempered alloy steel structural bolts. The A490 specification calls

for the heavy head and short thread length of A325(7) specification

together with chemical and physical properties nearly identical to

the A354 grade BD bolt. Bolt lots AD, BD, CD, and DD were made to

conform to the A490 specification by re-heat treating Canadian bolts

manufactured to AISI specification 4140.

Both 7/8 and I in. heavy and regular semi-finished hexagon

head bolts were tested. ASTM A194(8) grade 2H nuts with heavy semi-
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finished hexagon heads were used with all bolts tested and hardened

washers were used under all nuts. All reference to bolt head and

nut size is that defined in the American Standards Association speci­

fication B18.2(9).

Table 1 gives a complete description of the test specimens,

including such variables as length under head (L), grip length (g),

thread length under nut (t), diameter, head Size, and type of thread.

Each lot of bolts is identified by two letters followed by a series of

numbers and letters. The first number following the double letters

indicates the bolt diameter in eighths of an inch. The next number

or numbers indicates the length of thread under the nut in sixteenths

of an inc~. Finally, the letter S or L at the end of the designation

differentiates between ~hort (appro~. 4 in.) and long' (~pprox. 8 in.)

grip lengths. For example, the designation AC-7-9S indicates a 7/8 in.

diameter bolt with 9/16 in. thread under the nut and a short grip

length.

Since these tests were initiated to aid in the development

of the A490 bolt specification and since the A354 bolt was not· yet in

general use as a structural fastener, all of the bolts used for this

study were specially manufactured and therefore, exhibited a greater

variation in properties, both geometric and structural, than would

ordinarily be expected. Special attention was given to the resulting

problems, which included sub-standard th'read fit for some lots, a

wide scatter of individual test results, and a complete lack of shipp-
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ing oil on the A354 Be grade bolts.

The overall test program was planned to investigate the

previously discussed major and secondary types of tensile behavior

of these bolts. Bolt coupon and hardness tests were conducted to

establish trends based on the phys~cal properties specified by ASTM.

Table 2 lists in condensed form the physical properties specified by

ASTM for the 7/8 and 1 in. bolts. In addition to the properties called

for in the A354 and the A490 specifications, the corresponding values

from the A325 specification are listed for comparison.

In planning the program, emphasis was placed on the deter­

mination of basic tensile behavior in both direct and torque-induced

tension. Torqued tension tests of the A354 Be bolts could not be

completed until the threads were covered with a light, water-soluble

shipping oil. These bolts were received without any trace of lubrica­

tion and before this oil was applied, threads seized at applied loads

as low as ten kips. Because of this behavior, a complete series of

torqued tension tests was conducted with a heavy multi-purpose" grease­

type lubricant applied to the threads of both nuts and bolts, to

observe the effect of a lubricant heavier than shipping oil.

In addition to these basic ~ests, several special tests

were conducted without heavy lubricant to investigate the problems

discussed earlier.
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2. TEST PREPARATION AND PROCEDURE

2 • 1 PREPARATION OF BOLTS

Before testing, all bolts were stamped with their lot

designations and with a number to identify them within their lot.

Holes were then drilled with a combination drill and countersink

in the center of each end of the bolt. These holes provided rings

6f contact for the tips of the C-frame extensometer at the inter­

face of the drilled and the countersunk portions. This type of

contact was protected from damage and gave consistent readings in­

sensitive to minor inclusions of dirt. Reference 1 gives a more de­

tailed description of this preparation.

Each bolt was checked for thread fit with the'NC2A "Go" and

"No-Go" ring gages, and each nut was similarly checked with the .NC2B

plug gages. Only those bolts and nuts with proper thread fit were

used in the testing program.

2.2 TESTING EQUIPMENT

Bolt coupons were tested in a 60 kip universal testing

machine, using threaded tension grips to hold the coupons and a

Peters extensometer or autographic recorder to measure their elonga­

tion.

A 300 kip universal testing machine was used for the direct

tension tests of full size bolts with special tension grips to hold
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the bolt under head and nut.

Two different hydraulic bolt calibrators were used to measure

bolt tension during th~ torqued tension tests. One with a capacity of .

100 kips was used for the tests of 7/8 in. boits(lO)~ It was co~led

to an oil pump to test the bolts' in combined torqued-then-direct ten­

sion. The other, with a tensile capacity of 220 kips and a better

resistance to torque, was used for all torqued tension tests of 1 in.

bolts.

All bolt elongations were measured with a C-frame extensometer

consisting of a rigid adjustable steel frame and an Ames dial with divi­

sions of 0.0001 ,in. A counterweight was connected to the upper arm of

the frame so that it balanced in the measuring position.

The wrench used for all torqued tension tests was a large­

capacity pneumatic impact wrench running on a line pressure of approxi-

mately 130 psi at the wrench. The wrench capacity was adequate for all

bolts tested.

Additional details of the tes.ting equipment are given in

Ref. 1. Also, photographs of the testing devices are shown.

2.3 COUPON AND HARDNESS TESTING PROCEDURES

Coupon and hardness tests were conducted according to the

applicable testing procedure specified in ASTM Designation A370(11).

Coupons of 0.505 in. in diameter were prepared and tested at an indi­

cated strain rate of approximately 0.02 inches per minute. A complete
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stress-strain curve was obtained for each coupon. Particular emphasis

was placed on ultimate tensile strength, final elongation, and final

reduction in area. Either an autographic recorder or a Peters gage

was used to measure elongations in the elastic and initial plastic

range, and a steel scale and dividers were used for the remainder of

the test. The final cross sectional area at the fracture was determined

by using a micrometer to measure two mutually perpendicular diameters

and using the mean value to calculate the equivalent circular area.

Hardness tests were conducted on the sides of the bolt head.

A belt grinder was used to remove all scale from the areas to be tested

and to obtain a smoothly polished surface. Heat input was kept to a

minimum by using water during the grinding operation. Standard Brinell

and Rockwell C hardness tests were then conducted. Two trials were made

on each bolt for each type of hardness test and at least two bolts from

each lot were tested.

2.4 DIRECT TENSION TESTING PROCEDURE

Each bolt was installed in the tension grips of the hydraulic

testing machine with the nut in the desired position. The initial bolt

length was then measured with the C-frame extensometer with no load on

the bolt. With the extensometer still in 'place, the bolt was loaded to

its specified proof load. The load was then removed and the length was

again measured to determine if permanent set had occurred. If the per­

manent set exceeded 0.0005 in., the bolt was rejected as not meeting the

specification. Of the 84 bolts tested in direct tension only three were
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rejected on this basis, and two of these were' later found to have

microscopic -cracks through· their shanks at the base of the head so

that their effective area at that point was only one half of the

shank area.

After the bolt was checked in this manner it was again

loaded, this time to failure. Load was applied at a rate of approxi­

mately 0.01 in. total elongation per minute. Loads and elQngations

were measured at 10 kip intervals in the inelastic range until ulti­

mate load was reached. Then, after one or two more readings, the

extensometer was removed and the bolt was allowed to fail at the same

rate of elongation. During the inelastic range of the test,the machine

was stopped one or more times to determine the static load level. This

was consistently found to be about one kip below that at testing speed.

The same reduction was noted in Ref. 1 for tests of A325 bolts.

After failure, the bolt was fitted together as well as poss­

ible and the final measurement of elongation was made with the C-frame

extensometer or ,with a steel scale with .01 in. divisions.

2.5 TORQUED TENSION TESTING PROCEDURE

After the initial -length was measured, the bolt was installed

in the bolt calibrator with the proper thread length under the' nut.

This adjustment was obtained by using heavy packing washers to vary

the gripped length. These washers had milled surfaces which proVided

a tight fit between adjacent washers and the bearing plate of the bolt

calibrator.
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The bolt was first tightened with a hand wrench to a "snug"

load of 8 kips (10 kips for the LI, AB, and JJ lots). The nut was

o .
then turned with the impact wrench in 45 (1/8-turn) increments until

failure. Tightening was stopped at each increment and load and elonga­

tion.readings were· taken. After failure, the final 'elongation was, mea-

sured, in most cases with a steel scale, and type.?f -failure was re~

cor~ed. This general procedure'was followed for all tests in which

wrench tightening was used.

2.q TESTING PROCEDURE - SPECIAL TESTS

The tes,ts of bolts loaded in direct tension after being pre-

loaded by a given ,nut rotation with an impact wrench were all conducted

in the small bolt calibrator because it was the only one which was

adapted to the oil pump. Because of this, the tests were limited to

7/8 in. bolts. The bolts were first loaded exactly ~s described above

for torqued tensio~ tests until 5/8 turn-af-nut was reached. Then the

oil pump was brought up to a pressure equivalent to that in the load

cell for the holt tension indicated. The valve between load cell and,

pump was then opened and the load was allowed to stabilize. The result-

ing change in load was never more than ±l kip. The extensometer was

then placed on the bolt and the bolt was loaded directly with the oil

pump without further nut rotation. Loads and elongations were measured

at small intervals until several readings had been taken_beyond the

ultimate load. Fin~lly the extensometer was removed and pumping con-
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tinued' until bolt failure. Final elongation was measured with th~

extensometer and the type 0-£ fai lure was recorded.

The testing procedure for repeated wrench installation of

bolts was the same as that of the regular torqued tension tests

except that after a specified nut rotation, the nut was loosened

until all load was removed. This procedu~e was repeated' until bolt

failure. Final load, elongation, and number of cycles to failure

were than recorded. These tests were conducted to determine the

effects of reinstallation of alloy steel holts in the field. Heavy

thread lubricant was not used for these tests.

Several bolts were installed in steel plates and bolt load

could not be recorded during these tests. The bolts were installed

in the steel plate to the elongation, corresponding to "snug" load of

th~_~egular torqued tension tests. Then they were loaded to failure

in 45° increments. Elongation was measured at each increment. The

LI bolts were tested in a 4 in. square block of A440 steel with a

15/16 in. hole through it. The ED bolts were tested in four lin.

plies of A440 steel haVing the same overall dimensions as above.

All remaining lots were tested in the bolt calibrators with all oil

removed and the cylinder bearing against the casing of the cell.

Packing washers were used to provide the proper grip. The last

method, by far the easiest of the three, gave results consistent

with those of the first two methods. Again, in these tests the threads
-

were lubricated only with shipping oil.

-11-



A number of bolts were continuously torqued to a specified

nut rotation for comparison with holts torqued by incremental nut

rotation. They were first snugged with a hand wrench and then

tightened with the impact wrench in the bolt calibrator; and when

the specified nut rotation was reached, the load and elongation were

recorded.
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3. RESULTS AND ANALYSIS

3.1 COUPON AND HARDNESS TESTS

The results of all bolt coupon tests are listed in Table 3

and compared to minimum values specified by ASTM. All values for

strength and ductility exceeded specified minimum values except the

tensile strength for lot BD which was 98% 0'£ the specified value.

The elongations listed are for a gage length of 1.9 in. rather than

the two in. specified by ASTM. However, these values exceed the

specified values by a large margin except for the BD lot. Figure I

shows a typical stress-strain curve for a coupon cut from lot KK of

A490 bolts.

Table 4 lists the results of the Brinell and Rockwell C

har~ness tests for each bolt lot. These values all fall within the

range specified in the applicable ASTM specifications. This table

also gives the tensile strength for each lot of holts. Tensile

strength is discussed in more detail in the next section. It is

mentioned here only to point out that there is no good correlation

between the higher hardnesses and the higher tensile strengths re­

ported; and the hardness values do not compare consistently with

each other. However, the results do serve their intended purpose in

checking that the bolts met ASTM specifications.
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3.2 DIRECT TENSION TESTS

Figure 2 shows typical results of direct tension tests of

the A354 BD bolt. The bolt was still elastic qt proof load. After

reaching ultimate load, the bolts had less capacity for further de­

formation than did the coupons because of restraint caused by the

shank and nut and the relatively short gage length of the highly-stressed

threaded portion.

A number of direct tension tests were conducted with approxi­

mately six threads under the nut as specified by ASTM A370. The ulti­

mate tensile strength for each of these lots is reported in Table 4

along with the percent of that specified by ASTM. Bolt strength varied

from 102 to 113% of that specified by ASTM. If these percentages are

compared lot by lot with those from the coupon tests recorded in

Table 3, it will be noticed that there is usually close agreement

between the two. The largest discrepancies occur for the one in.

bolts (lots Be, DC, BD, and FD) where the coupon strengths are always

the lower of the two values. For example, the BD lot coupon tests

indicated that the mean tensile strength was 98% of the ,required

tensile strength, while the mean ultimate load of the bolts tested

was 110% of that specified. If the increase of bolt strength over

coupon strength were a constant ratio, it could be ascribed to

differences in test methods or to small inaccuracies in the concept

of stress area. However, since the effect is much more pronounced

with the larger diameter bolts, it is likely that this is the result
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of a decreasing effect of heat treatment near the center of the larger

bolt.

Table 5 contains all test results for all bolts tested in

direct tension, including tensile, strength and its standard deviation;

load at rupture; and elongations at proof load, ultimate load/and

rupture load.

A study of Table 5 indicates that bolts with short lengths

of thread under the nut have significantly higher tensile strengths

and lower failure elongations than bolts from the same lot tested with

more thread under the nut. This higher strength is partially the

result of a small decrease in thread depth near the thread runout

which results in a somewhat larger cross sectional area. The strength

may also be higher because failure is forced to Dccur' over a relatively

short length of thread. Bolts with longer thread lengths under the nut

normally failed on a diagonal plane in both the direct and torqued

tension tests as indicated in Fig. 3a, while the failure planes were

less inclined when the thread length under the nut was shorter as

shown in Fig. 3b. This change in the plane of failure together with

the larger restraint to lateral contraction caused by the proximity

of nut and bolt shank to the zone of maximum stress resulted in in­

creased tensile strength. Because of the short length of the highly­

stressed threaded portion, elongatipn capacity is reduced for short

thread lengths under the nut. Two bolts with' short threads failed
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by thread stripping but only after' having reached an ultimate load

well above the specified minimum tensile strength.

A comparison of the behavior in direct tension of the A325,

A354BC and A490 (or A354BD) bolts is made in Fig. 4. The curves shown

are for bolts having nearly equal grip lengths and thread lengths

under the nut. It is obvious that increased bolt strength is accom-

panied by a decreased deformation capacity.

Although a threaded fastener is not a simple tension bar,

its elastic behavior may be computed by using a few simplifying

assumptions. First the threaded portion is considered as a uniform

shaft having a cross-sectional area equal to the stress area listed

in the applicable ASTM specification. Secondly it is assumed that

the full tensile load in the bolt is carried between the inner face

of the bolt head and a point centered between the two faces of the

nut. It is further assumed that no stress causing axial deformation

exists beyond these limits. The total elongation of the bolt as

measured by the C-frame extensometer at any given elastic load can

then be computed from the formula:

-16-
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8 = fEbE . A

8 = total axial deformation in in.,

p = axial load in kips,

E = modulus of elasticity in kips per sq. in.,

L = length in in., and



A = cross sectional area in sq. in.

Table 6 lists the computed elongations at proof load for

both direct and torqued tension tests. The computed values were with­

in 8% of the measured values for the direct tension tests.

3.3 TORQUED TENSION TESTS

Two series of torqued tension tests were conducted, one with

a heavy commercial lubricant applied to the threads of bolt and nut

and the other with only a light shipping oil, or simulated shipping

oil in the case of the four lots of A354 Be bolts. In all other

respects the procedures of the two series were identical. Figure 5

shows the load-elongation relationsh~p in torqued tension with threads

as received for the ED lot A354 BD bolt. The load at 1/2-turn is just

above proof load.

Table 7 shows the results of torqued tension tests of bolts

coated with shipping oil, while Table 8 lists the results of tests of

bolts coated with the heavy lubricant. These tables show the mean

values of load at 1/2 turn-of-nut from snug, torqued tensile strength,

rupture load; and the elongations at proof load, at 1/2 turn-of~nut,

at ultimate load, and after rupture. The nut rotation from snug to

failure is also listed as are the standard deviation of the mean values

of tensile strength and the torqued ultimate load expressed as a per­

centage of the ultimate load in direct tension for the same lot. In

addition to these values, Table 7 reports load and elongation at 5/8
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turn-of-nut from snug. These values are reported because they are the

closest available to the 2/3 turn specified in the 1964 specification

of- the Research Council. for bolts having lengths under head greater

than eight inches or eight diameters whichever is smaller.

The mean curves of Figs. 2 and 5 and the mean curve in

torqued tension with lubricated threads are shown in Fig. 6 for

comparison ,of the results of the different types of tests. The ulti-

mate strength in direct tension is substantially greater than that in

torqued tension. Many investigators have observed this increase in

A325, A354, and A490 bolts(l)(2)(3). Thread lubrication had little

effect on the torqued tension behavior.

The lower tensile strength of bolts in torqued tension has

b 1 · d h · 11 · h h·· 1 ' h (12) (13)een exp a~ne t eoret~ca y w~t t e pr~nc~pa stress t eory .

and the principal strain theory(l2). Lubrication could allow a higher

ultimate tensile strength because the shear stress component induced

by torque may be reached. Lubrication is thought to have a small

effect because the high bearing stresses encountered cause the struc­

tures of the lubricant to break down(l3).

The reductio~ in tensile strength occurred in all- of the

torqued tension tests listed in Tables -7 and 8. The percentage that

torqued tension ultimate strength is of direct tensile strength,

recorded in bot~ tables, averages about 85% for threads coated with

shipping oil anQ about 88% for heavily lubricated threads. For the

A354 Be bolt, proof Load is 84% of specified -ten~ile strength and for

the A354 BD and A490 bolts it is 80% of specified tensile strength.
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Had the bolts tested in this program been minimum strength bolts, some

of the 'lots mig~t have had ultimate ~trengths in torqued tension below

proof load. Regardless of the nut rotation specified, proof load

could not be induced in such bolts.

Figure 7 allows comparison of the typical behavior of A325,

A354 Be and A354 BD (or A490) bolts in torqued tension. Each lot

shown was tested with 3/4 in. thread under the nut and a grip length

of either 4-1/4 or 4-1/2 in. As in the direct tension tests, the

higher-strength bolts show smaller elongations to failure under torqued

tension. The higher-strength bolts also reach ultimate load at a

smaller elongation and the load then drops off more quickly than with

A325 bolts. This was also true for the direct tension relationships

shown in Fig. 4.

Another interesting point is that the mean elongation at

1/2 turn, given in Tables 7 and 8, is fairly constant for most of the

bolts tested. For the higher-strength, long-grip bolt this elonga­

tion may be entirely due to elastic deformations, whereas for the

lower-strength bolt both elastic and inelastic deformations may be

included. For example, Fig. 8 compares the torqued tension behavior

of A325 bolts with a grip 'length of 8-1/4 in. with that of A490 bolts

with a grip length of 9-11/16 in. The elongation and load at 1/2 turn

of nut are nearly identical for the two bolt lots. The 1/2 turn is

well into the inelastic range and above proof load, for the· A325 bolt;

howeve~, it is in the elastic range and below proof load for the A490
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bolt. In general, as bolt strength and grip length increase so does

the elongation to the elastic limit or proof load. The compressive

deformation of the material being gripped also increases with higher

bolt tension. These effects combine to require larger nut rotations

to induce proof load in the high-strength bolts, especially those with

long grip lengths.

A study of Fig. 9 yields further interesting information.

This figure derived from Table 7, is a bar graph of the loads at 1/2

and 5/8 turn and the ultimate load for the A354 BD and A490 bolts for

torqued tension tests with threads as received. The load scale is

non-dimensianalized by dividing all loads by the proof load so that

7/8 and 1 in. bolts may be compared. The ultimate load is shown to

indicate the remaining load available at 1/2 and 5/8 turn-of-nut.

The load at 1/2 turn-af-nut is consistently below proof load for the

bolts with longer grip lengths for the reasons just presented. Even

at 5/8 turn-of-nut, two of the lots with longer grips had mean loads

below proof load. Thread length under the nut showed no consistent

effect on the loads at 1/2 and 5/8 turn. Table 8 shows that thread

lubrication did nothing to improve this behavior. Although the load

at 1/2 turn-of-nut was above proof load for most of the bolts with

short grip lengths, it usually remained within the elastic range and

was therefore very sensitive to minor changes in elongation.

The effects of grip length on the load-elongation relation­

ship of the alloy steel bolt are illustrated in Fig. 10 for two lots of

-20-



7/8 in. A490 bolts. Both lots had the same thread length under nut.

The relationship for the shorter bolt, shown by the solid line, has

a steeper elastic slope than that for the longer bolt; and although

the elongations at 1/2' turn-of-nut are approximately equal for the

two lots, the resulting load is above proof load for the shorter

grip bolt and below proof load for the longer.

The elastic deformation of bolts in torqued tension is

nearly the same as in direct tension and can be computed in the same

way. Table 6 shows the comparison between the computed values of

elongation at proof load and the measured values in torqued tension

taken from Tables 7 aJ.1.d -8. For bolts in which ine lastic deformations

are not present, the induced preload due to a specified elongation

can be predicted reasonably well.

Figure 11 emphasizes the differences resulting from tests

of bolts from the same lot with different lengths of thread under the

nut. As with the direct tension tests, a shorter length of thread

under the nut results in a higher ultimate load. The reasons for

this are the same as for the direct tension tests, This behavior

was not appreciably affected by thread lubrication.

The nut rotation to failure ranged from 1 to 1-7/8 turns

for torqued tensinn tests with threads as received and from 1-1/8 to

1-7/8 turns with lubricated threads. Lubrication had no significant

effect on the rotation to failure. The nut rotation to failure is
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plotted versus the thread length under nut for the 7/8 in. bolts in

Fig. 12 Mean curves are shown in the figure, one for A354 Be bolts,

one for A354 BD and A490 bolts, and one taken from Ref. 1 for A325

bolts. In all three cases there is an increase in the nut rotation

to failure with an increase in the thread length under the nut.

While this is very pronounced for A325 bolts, it is less for alloy

steel bolts. The "I-in. alloy steel holts show trends much like the

7/8 in. bolts. Increased nut rotation to failure depends directly

on the incre'ased elongation capacity of ,bolts with greater thread

length under nut. The more· the bolt stretches, the greater is the

nut rotation that must be applied to cause bolt failures.

The reduced ultimate load for these boits in torqued ten­

sion and the high ratio of proof load to specified ultimate load

(0.80) for the A354 BD and A490 holts make it advisable to consider

a minimum preload for installation somewhat below proof load. It

is possible that the ultimate load in torqued tension could he less

than.80%, of that in direct tension, below proof load for minimum

strength bolts •

. 3.4 COMBINED TORQUED-DIRECT TENSION TESTS

Figure 13 displays the results of this study. The bolts

were first tightene4 to 5/8 turn_from snug and then loaded in direct

tension. The transfer from torqued to direct tension is indicated by

the sharp turn upward of the load-elonga~ion relationship. The curve
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then quickly approaches the direct tension curve for the same lot of

bolts, shown as a dashed line. The curve then quickly approaches the

direct tension curve for the same lot of bolts, shown as a dashed line.

The curve showing the load-elongation relationship in torqued tension

with threads as received is also included as a frame of reference.

Bolt fractures were all simila-r to those in direct tension with no

visible influence of torsional shearing stresses.

One lot of A354 Be bolts and three lots of A490 bolts were

first tightened to 5/8 turn and then loaded in direct tension. The

mean ultimate loads reached during these tests ranged from 97 to 103%

of the corresponding values in direct tension.

3.5 REPEATED WRENCH INSTALLATION

Figure 14 illustrates the relationship between load and

elongation for repetitive torquing to 1/2 turn-af-nut of an A354 Be

bolt with a thread length under the nut of 11/16 in. The dashed

curve shows the corresponding torqued tension calibration. Twelve

A354 BC bolts and 12 A490 bolts were tested by repeatedly tightening

and then loosening the nut. Nine A354 BC and 6 ,A490 bolts were

tightened with cycles of 3/4 turn-of-nut. Three A354 Be and 3 A490

bolts were tightened with 1/2 turn cycles and 3 A490·bolts were

tightened with 2/3 turn cycles. In all cases the load at the end

of each successive cycle was lower than for the previous cycle. No

more than three cycles of installation were completed before failure
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for the bolts tightened to 3/4 turn-of-nut, while the lot tightened to

1/2 tu~n withstood an average of four cycles before failure.. For

every bolt tested the installation time for the second cycle was

nearly triple that of the first. Becaus,e of the incremental nature

of testing, this' increase in time was not measured precisely or

recorded.

These bolts were more sensitive to repeated applications of

load than A325 bolts(l). This severity is the result of greater cumu­

lative thread damage caused by high loads and high stress concentrations

acting on threads of the same geometry as the threads on the A325 bolts.

The behavior of the A490 bolts seemed to be no more critical than that

of the A354 BC bolts. However, a direct comparison is difficult

because of the limited number of tests conducted.

3.6 BOLTS INSTALLED IN STEEL PLATE

Table 9 summariz,es the" results of tests of holts installed

in steel plates rather than in the hydraulic bolt calibrator. Three

A354 BC bolts, 9 A354 BD bolts, and 21 A490 bolts were tested. The

table lists mean experimental values of elongation at 1/2 turn-of-nut,

elongation after rupture, and nut rotation to failure. Also listed

is the computed load at 1/2 turn as determined from the measured

bolt elongation applied to the mean torqued tension load-elongation

curve for tests of the same lot of bolts in the bolt calibrator.

This load is then tabulated as a percentage of the ,load at 1/2 turn
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for bolts tested under torqued tension in the bolt calibrator.

The most striking resu.it indicated in the table is that

the elongation at 1/2 turn-of-nut for bolts tightened in solid plate

averages about 0.03 in. while in the bolt calibrator the average

elongation was closer to 0.02 in. for the same lots (see Table 7).

This results in an increase in the load at 1/2 turn above that found

in the bolt calibrator. Apparently the elongation and corresponding

tension of a bolt tightened to a given nut rotation in a well com­

pacted joint may be substantially above the values obtained using a

hydraulic bolt calibrator. In the last two columns of this table are

shown the nut rotations to failure for these tests and those listed in

Table 7 for the regular torqued tension tests. It will be seen that

in the steel plate, rotation to failure averages about 1/8 turn less

than for the tests conducted in the bolt calibrator. It is apparent

that the increased deformation of the bolt calibrator results in an

increase in the nut rotation required to cause failure.

The results of this type of test are shown in Figs. 15 and

16 for the ED lot-cit A354 BD bolts torqued in 4-4 x 4 x 1 in. plies of

A440 steel. At the top of Fig. 15 are plotted the relationships for

nut rotation versus elongation. The solid test points are for the

bolts tested in the bolt calibrator and the open points are. for those

tested in the steel" plate. Bolts torqued in steel plate to a given

nut rotation were more elong·ated than those torqued in the bolt

calibrator.

Ideally, the bolt head, the nut, and the gripped material
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would be completely rigid and the entire deformation would be in the

form of elongation of the bolt shank and threads. For one revolution

of the nut, this deformation would be equal to the distance between

threads. This ideal behavior is shown as a dashed curve in Fig. 15.

The three curves shown at the top of the figure all originate at the

mean snug elongation of 0.0025 in. as measured during the torqued ten­

sion calibration. Bolts in the steel plate were purposely snugged to

this elongation.

The bottom half of Fig. 15 is the mean relationship between

bolt tension and elongation for this lot of bolts in torqued tension.

By projecting the elongations from the elongation-rotation curves onto

the mean load-elongation curve in this manner, load-versus-nut-rot,Btion

relationships cari be plotted for the so~id plate tests and for the ideal

case of completely rigid bolt head, nut, and gripped material. These

relationships are plotted in.Fig. 16. The shape of the curve for the

ideal case is the same as the load-elongation curve since in this case

there is a direct relationship between nut rotation and bolt elongation.

The computed curve for the solid plates deviates from this curve at a

constant rate, indicating the flexibility of the system. Proof load

was reached in this case at just over 1/4 turn-of-nut. The load-rota­

tion curve obtained in the bolt calibrator is also compared with the

ideal and solid plate curves in Fig. 16. This curve indicates the

greatest flexibility with large deformation at small rotation indi­

cating a slight amount of play in the hydraulic system itself, prob­

ably, due to entrapped air. Proof load was not reached in this case

until just under 1/2 turn-af-nut. These three curves also indicate
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smaller nut rotations to failure for the stiffer assemblies.

3.7 CONTINUOUSLY TORQUED BOLTS

Two lots of A354 Be and three lots of A490 bolts were

torqued continuously to either 1/2 or 3/4 turn-of-nut to determine

whether the bolts were affected by incremental tightening. The

resulting variation was no more than ten percent in either direc­

tion for load or elongation ·at the specified number'of turns.

Similar results were reported in Ref. l.for A325 bolts.
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The following con-elusions and reconnnendations are based upon

the tests described in this report.

1. Coupon tests do not accurately reflect the true strength

of a bolt when they are cut concentrically with the bolt axis, primar­

ily because of the reduced effect of heat treatment near the center of

the bolt. The inaccuracy was more pronounced for the I in. bolts than

for the 7/8 in. bolts as is evident in Table 3.

2. The elastic behavior of high strength bolts in direct

and torqued tension can be predicted using the simple theory for de­

formation of axially loaded members (Table 6).

3. All bolts had lower ultimate loads when tested in torqued

tension than in direct tension. Ultimate loads of bolts torqued with

shipping oil as the only lubricant varied from 78 to 92% of those

tested in direct tens,ion, with an ave"rage value of about 85%. Heavy

lubrication resulted in slightly increased torqued ultimate loads for

the A354 BD and A490 bolts with short lengths of thread under the nut

(Fig. 6).

4. A decrease in the length of thread under the nut results

in increased ultimate strength and reduced elongation capacity for

both d~rect and torqued tension tests of alloy steel bolts.

5. When bolts were tested in the hydrauli~ bolt calibrator,
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the preload induced by 1/2 turn-af-nut exceeded proof load for all lots

of A354 Be bolts and for most of the A354 BD and A490 bolts with short

grip lengths. ' However, these loads usually remained in the elastic

range and were therefore subject to large variations for relatively

small variations in elongation. For the A354 BD and A490 holts with

grip lengths above seven inches, proof load could not be induced by

1/2 turn-of-nut. Even at 5/8 turn-of-nut, the preload induced in the

bolt calibrator was often less than proof load.

6. Tests of A354 and A490 bolts tightened in steel plate

indicate that fewer turns of nut are required to induce a given pre­

load than in the holt calibrator. Less nut rotation to failure was

also observed in steel plate. These effects are due to the inherent

flexibility of the bolt calibrator.

7. The 1 in. A354 Be bolts behaved in a somewhat less

ductile manner than 7/8 in. A354 Be bolts. The nut rotation to failure

averaged about 1/4 turn less for the 1 in. holts than for the 7/8 in.

bolts. This was not the case for the A354 BD and A490 bolts.

8. Except for providing a 'higher ultimate strength in

torqued tension for the A354 BD and A490 bolts with short thread

lengths under nut, heavy thread lubrication had little apparent effect.

For the A354 Be bolts, the freshly applied shipping oil seemed to be

slightly more beneficial in producing high ultimate loads and large

nut rotations to failure than the heavy lubricant.

9. Nut rotations from snug were found to-vary from one to
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nearly two full turns before bolt failure, increasing with ~ncreased

thread length under the nut. In general, the, A354 Be bolt withstood

more turns to failure than the A354 BD" or A490 bolt.

10. Direct tension tests after preloading the bolt indicate

that pre loading with a wrench does not reduce the tensile strength.

11. Repeated tightening of alloy steel bolts into the

inelastic range resulted in a marked reduction in induced tension

with each installation and a marked increase in installation time.

12. The behavior of alloy steel bolts torqued continu­

ously 'to a given nut rotation does not differ from that of incre­

mentally-tightened bolts.

13. Consideration should be given to specifying an in­

stalled preload less than the proof load for alloy steel bolts.
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TABLE 1

DESCRIPTION OF SPECIMENS

I L I

~ Grode 2H
Heavy Hexaoon Nut

Bolt ASTM Head* Nominal Type of L g t
Lot Designation Type Diameter, Thread inches inches inches

inches-

JAC-7-ZS A354BC H 7/8 Cut 5.25 3.62 0.125,j

tor

AC-7-9S " H 7/8 II " 4.06 0.562

J rBC-S-ZS " H 1 II 11 3.37 0.125

II H 1 II II 3.94 0.688Be-8-liS

'\;' CC-7-12S " R 7[8 Rolled 5.50 4.25 0.75

DC-8-16S II R 1 " " " 1.00

~- AD-7 -28 A490 H 7/8 Cut 5.25 3.62 0.125
.~.) '~

1~ AD-7-9S II H 7/8 11 If 4.06 0.562

J LBD-S-ZS
II H 1 II ff 3.37 0.125

BD-8-11S " H 1 " II 3.94 0.688

,) rCD-7-2L II H 7/8 " 9.25 7 0 62 0.125

lCD-7-9L II H 7/8 " " 8.06 0.562

j r DD-8-ZL II H 1 II " 7.37 0.125, ,
1
»
{-- DD-8-11L II H I II II 7.94 0.688

"'! ED-7-12S ' A354BD R 7/8 Rolled 5.50 4.25 0.75

~J FD-8-16S If R 1 II " II 1.00

"g GD~7-12L " R 7/8 Cut 9.50 8.00 0.75

HD-8-16L II R 1 " " 7.75 1.00

,t rLI-7-2S A490 H 7/8 Rolled 5.50 4.12 0.125

LLI-7-9S If H 7/8 II 11 4.56 0.562

'L~ r AB-7 -2L II H 7/8 Cut 9.50 8.25 0.125
-. {

!

~ AB-7-9L II H 7/8 If II 8.69 0.562

·1 KK-7-2S " H 1/8 Rolled 5.50 4.19 0.125

,.J JJ-8-6S II H 1 II " 4.12 0.375

*From Amarican St andards As s oc • BI8.2: H identifies Heavy Semi-finished Hexagon Head
R identifies Regular Semi-finished Hexagon Head
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TABLE 2

SPECIFIED PHYSICAL PROPERTIES

Bolt Stress ASTM Coupon Properties Bolt Properties
Diameter, Area, Designation Tensile % Elong. % Red. Proof Tensile* Hardness, Hardness,
inches sq. in. Strength, in 2 inches of area Load, Strength Rockwell C Brinel1

min, ksi min. min. min, kips min, -kips

7/8 0.462 A325 - - ... 36.05 53.15 22-34 235-321

" " A354B.C 125 16 50 48.50 57.75 25-34 . 255-321

II II A354BD 150 14 35 55.45 69.30 32-38 302":'352
I
w II It A490 150 14 35 55.45 69.30 32-38 302-352+'
I

1 0.606 A325 - - - 47.25 69.70 22-34 235-321

" II A354BC 125 16 50 63.65 75.75 25-34 255-321

" " A354BD 150 14 35 72.70 90.90 32'!:'38 302-352

" If A490 150 14 35 72.70 90.90 -32-38 302~352

*Specified for bolts tested with 6 full threads under the nut, acco~ding to ASTM Des·ignation A370, Supplement III



Tab Ie 3

COUPON TEST RESULTS

Bolt
Lot

ASTM
Designation

Number Tensile % ASTM
Tested Strength Minimum

ksi

E1ong. % ASTM Red. of % ASTM
in 1.9"% Minimum Area, % Minimum

AC A354BC 3 140.3 112 21.2 132 57.2 "114

BC II 3 126.2 101 22.1 138

CC II 3 133.0 106 21.6 135 62.2 124

DC II 3 131.6 105 22.6 141 63.1 126

AD A490 3 162.5 108 18.0 128

BD II 3 147.7 98 14.6 104 59.1 169

CD II 3 156.1 104 18.8 134 59.8 171

DD II 3 156.6 104 19.8 142 59.8 171

ED A354BD 3 164.9 110 16.6 118 59.1 169

FD II 3 149.8 100 16.7 119 58.1 166

GD " 3 160.9 107 18.8' 134 58.1 166

lID II 3 165.1 110 16.3 116 55.5 159

LI A490

AB " 3 151.6 101 21.4 153 52.9 151

KK II 3 153.4 102 20.0 143 55.5 159

JJ 11

Table 4

COMPARISON OF BOLTS TO ASTM SPECIFICATIONS

Bolt ASTM Hardness, Hardness, Tensile Stren th*
Lot Designation Rockwell C Brinel! Number Mea~, % ASTM

Tested kips Minimum

AC-7-9S A354BC' 30 269 3 65.0 113

Be-8-lIS II 30 281 3 82.9 109

~C-7-12S
~I 31 277 3 62.3 108

DC-8-16S II 32 288 3 83.1 110

AD-7-9S A490 34 329 3 76.5 110

BD-8-11S II 35 328 3 100.0 110

CD-7-9L II 35 328 3 74.5 108

DD-8-11L II 34 304 3 96.7 106

ED-7-12S A354BD 38 338 3 77.8 112

FD-8-16S " 37 331 3 99.3 109

GD-7-12L II 32 331 3 75.5 109

lID-8-16L II 36 332 3 100.5 110

LI-7-9S A490 34 318 5 72.1 104

AB-7-9L " 34 307· 5 70.8 102

KK II 35 323 72.3+ 104

JJ II 35 323

*A11 results shown here are for approximately six threads under the nut as specified
in ASTM,A370

+From mill report -35-



TABLE 5 .

DIRECT TENSION TEST RESULTS

Bolt ASTM Number of Ultimate Load Rupture Elongation, inches
Lot Designatfon Specimens Mean Std. Dev. % ASTM Load At Proof At Ult. After

Tested kips kips Minimum kips Load Load Rupture

AC-7-2S A354BC 3 72.6 1.88 126 64.3 .0114 .0854 0.173
AC-7-9S 11 3 65.0 1.57 113 52.0 .0136 .0758 0.190
BC-8-2S II 3 91.0 2.26 120 76.3 .0115 .0783 0.140
Be-8-llS 11 3 82.9 1.60 109 61.7 .0139 .0919 0.263
CC-7-12S " 3 62.3 0.20 108 48.7 .0139 .0900 0.300
DC-8-16S " 3 83.1 1.22 110 64.0 .0141 .1079 0.293

fAD:7-28-'- A490 3 83.1~ 2.63 120 78.3 .0134 •.0459 0.083
L-AD-7-9S " 3 76.5- 1.51 110 68.7 .0156 .0605 0.113
1"'BD-B-2S " 3 102.11 1.83 112· 92.0 , .0138 .0611 0.127
LBD-8-11S " 3 100.0: 0.20 110 92.3 .0161 .0747 0.143

I rCD~7-2L c

11 3 82.6j 1.25 119 79.2 .0256 .0702 0.120
UJ
0'\ lCD-7-9L' " 3 74.5- . 0.44 lOS. 69.8 .0281 .0807 0.120
I

rDD-B-2L II 3 105.41 0.71 116'- 93.3 .0258 .0841 0.147
JlD-8..1lL II 3 96.7 ' 0.53 106~ 85.3 .0277 .0909 0.173
ED-7-12S A354BD 3' 77.,·8·....· 0.67 112 71.7 .0159 .0619 0.120
FD-8-16S· 11 3 99411-3 - 2.18 109 8;1..3 .0169 .0899 0.207
GD":7-12L II 3 75.5 _. 0.82 109 71.0 .0275 .0839 0.137
HD-8-l6L II 3 100.5 :" 1.25 110 91.7 .0280 .0938 0.137

[LI-7-2S A4~O 5 76.0:, - 0.54 110 67.0 .0150 .0510 0.137
LI-7-9S " 5 72.~ 0.17 104 59~.0 .0170 .0650 0.245

[AB-7-2L " 5 73.- -r 1.59 106 65.0 .0280 .0779 0.120
AB-7-9L II 5 70.,SJ 1.69 102 61.0 .0290 .0846 0.180

-KK-7-2S .11 5 77.9 0.44 112 69.3 .0156 .0607 0.115
-JJ-8-6S II 5 99.2 ./ 1.57 109 85.0 .0160 .0625 0.189



THEORETICAL ELASTIC BEHAVIOR

Bolt Pr.oof Calc. E1ong. Elong. at Proof Load/Calc. Elong.
Lot Load at Proof Load

kips inches Direct Torq. Ten. Torq. Ten.
Tension threads as threads

re·ceived lubr.

AC-7-2S 48.5 .0115 0.99 1.06 1.05
AC-7-9S " .0130 1.05 1.27 ~.31

BC-8-2S 63.65 .0112 1.03- 0.98 1.12
BC-8-11S " .0131 1.06 ~.15 1.22
CC-7-12S 48.5 .0138 1.01 1.23 1.30
DC-8-168 63.65 .0142 0.99 1.06 - 1.09
AD-7-2S 55.45 .0132 1.02 1.11 1.02
·AD-7-9S " .0150 1.04 1.10 1.30
BD-8-2S 72.70 .0127 1.09 1.10 1.10
BD-B-llS 11 !f0l50 1.08 1.10 1.20
CD-7-2L 55.45 .0257 1.00 1.05 1.05
CD-7-9L " .0275 1.02 1.04 1.05
DD-8-2L 72.70 .0252 1.02 1.03 1.01
DD-8-11L " .0275 1.01 1.02 1.02
ED-7-12S 55.45 .0157 1.01 1.07 0.99
FD-8-16S 72.70 .0162 1.04 1.08 1.36
GD-7-12L 55.45 .0275 1.00 0.96 0.98
HD-8-16L 72.70 .0273 1.03 0.99 1.03
L1-7-28 55.45 .0148 1.01 1.08
L1-7-98 " .0165 1.03 1.09
AB-7-2L " .0276 '1.01 1.01
AB-7-9L " .0295 0.98 1.05
KK-7-2S " .0150 1.04 1.16
JJ-8-68 72.70 .0153 1~O5 1.03
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TABLE 7

TORQUED TENSION TESTRE8ULT8

Threads as Received

L~\J /(-~J

t)

\ ~~ ,t:,

Bolt Proof Number of Load at Load at Ultimate Load Rupture Elongation, inches Nut Rotatior-
Lot Load Specimens 1/2 turn 5/8 turn Load, to Rupture

kips Tested kips kips Mean, Std. Dev. % Direct kips At Proof At 1/2 At 5/8 At U1t. After revs.
kips kips Tension Load Turn Turn Load Rupture

Ultimate

,~~ /
48.50 57.6 61.3 1.36 0.113 1-1/2\~-2S/ 3 49.1 84.5 47.0 .0122 .0128 .0210 .0512

C-7-9'S II 3 52.8 55.1 56.5 0.87 87 36.7 .0165 .0260 .0369 .0614 0.167 1-3/4
f [B' -.(28 63.65 3 75.3 77.8 78.5 3.50 86.5 43.3 .0110 .0202 .0308 .0389 0.110 1-1/4
:1 ' ~!Y':8~,lS " 3 70.2 72.2 72.7 4.49 88 55.3 .0150 .0291 .0304 .0473 0.110 1-1/4
i,/-cC-7-1~ 48.50 3 51.1 53.6 55.7 0.30 89.5 40.3 .0170 .0227 .0345 .0669 0.160 1-7/8

DC-8-16S 63.65 3 70.8 73.5 74.5 1.50 90 49.7 .0150 .0299 .0430 .0562 0.170 1-3/4

1(AD-7-2S --- 55-.-45,._-_ _3 48.9 - ---62-.~ 70.5 1.82 85 58.0 .0147 .0127 .0185 .0376 0.080 1-1/4

I I'rl1f:i .•. ' AD-7-9S
II 3 60.9 64.8 66.9 2.11 87.5 53.0 .0165 .0209 .0313 .0510 0.120 1-3/8

VJ"~ (BD-8-28 72.70 3 84.5 90.7 90.7 0.58 89 71.7 .0140 .0181 .0280 .0280 0.103 1
ex> ... BD-8-11S " 3 72.5 80.5 83.0 7.86 83 58.0 .0165 .0173 .0273 .0441 0.120 1-3/8
I ~0

55.45 3 45.7 50.1 71.9 1.-86 87 66.7 .0270 .0219 .0244 .0652 0.110 1-3/8CD-7-2L
LCD-7-9L ' II 4 46.9 55!"7. 62.. 6 2.06 &4 56.2 .0285 .0240 .0316 .0610 0.105 1-1/4
DD~8-2L 72.70 3 64.0 80.0~ 90-.3 1.15 85.5 70.7 .0260 .0223 .0289 .0498 0.107 1-1/4
'DD-8-11L " 3 67.0 78.8U' 84.0 2.65 87 59.7 .0280 .0262 .0345 .0537 0.147 1-5/8

fF--'b~::Y~~ 55.45 4 59.2 64.0 67.6 1.95 87 52.8 .0168 .0183 .0279 .0484 0.145 1-3/8
~ FD-8-16S 72.70 3 77.8 83.8 88.2 2.36 89 68.8 .0175 .0222 .0298 .0541 0.143 1-3/8
~ GD-7-12L 55.45 3 32.7 42.6 69.3 0.87 92 58.0 .0265 .0155 .0206 .0725. 0.127 1-3/4
L HD-8-16L 72 •.70 3 66.7 8,l.5 91.2 1.44 91 75.3 .0270 .0250 .0336 .0616 0.173 1-3/4

T1LI-7-2S* 55.45 5 53.4 59.9 61.1 2.80 80.5 40 .0160 .0162 .0216 .0260 0.075 1-1/4
LI-7-9S* If 5 50.0 55.4 58.4 3.00 81 34 .0180 .0156 .0206 .0310 0.110 1-5/8

1~Al3 ...7-2L* II 6 48.6 5].5 65.4 2.80 89 52 .0280 .0235 .0291 .0530 0.080 1-3/8
t U-7-9L*

If 5 41.1 50.8'----- 61.8 2.18 87 50 .0310 .0219 /.0268 .0700 0.114 1-3/4
1 KK-7-2S " 10 56.2 60.2 60.4 3.50 77.7 47.5 .0173 .0182 .0276 .0295 0.062 i
4 JJ-8-65* 72.70 5 81.0 85 •.8 87.3 1.26 87.9 64 .0158 .0201 .0311 .0466 0.145 1-1/2

*Snug load was taken as 10 kips for these lots
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Table 8

TORQUED TENSION TEST RESULTS

Threads Lubricated

Bolt Proof Number of Load at Ultimate Load Rupture Elongation, inches Nut Rotation
Lot Load, Specimens 1/2 turn Load to Rupture

kips Tested kips Mean, Std. Dev. %Direct kips At Proof At 1/2 At Ult. After revs.
kips kips Tension U1t. Load Turn Load Rupture

AC-7-2S 48.50 3 51.5 62.5 1.13 86 44.3 .,0121 .0130 .0555 0~117 1-5/8
AC-7-9S 11 3 52.0 56.8 0.50 87.5 40.3 .0170 .0225 .0583 0.157 1-3/4I

VJ BC-8-2S 63.65 3 74.2 76~5 1.80 84 52.0 .0125 .0208 .0371 0.103 1-1/4
\0 BC-8-11S " 3 67.2 71.5 3.00 86.5 51.3 .0160 .0220 .0518 0.133 1-1/2I

CC'-7-12S 48.50 3 50.8 55.2 0.53 89 43.0 .0180 .0231 .0628 0.160 1-7/8
DC-B-16S 63.65 3 70.2 73.7 3.34 89 54.7 .0155 .0243 .0608 0.153 1-3/4
AD-7-2S 55.45 3 60.3 78.6 1.46 94.5 59.3 .0135 .0152 .0496 0.127 1-'1/2
AD-7-9S " 3 58.0 65.8 6.25 86 50.3 .0195 .0199 .0537 0.150 1-5/8
BD-8-2S 72.70 3 83.5 91.3 7.37 89.5 73.7 .0140 .0178 .0367 0.100 1-1/8
BD-B-llS " 3 68.0 78.8 5.80 79 60.3 .0180 .0170 .0401 0.117 1-3/8
CD-7-2L 55.45 3 47.8 76.1 0.93 92 58.0 .0270 .0228 .0627 0.143 1-3/4
CD-7-9L " 3 46.7 66.6 0.82 89.5 56.3 .0290 .0239 .0630 0.133 1-1/2
D~-8-2L 72.70 3 58.3 99.0 2.78 94 77.0 .0255 .0201 .0603 0.115 1-5/-8
DD-a-IlL " 3 69.7 85.0 3.28 88 58.7 .0280 .0269 .0684 0.153 1-3/4
ED'-7-l2S 55.45 3 61.9 68.5 0.45 88 58.0 .0155 .0192 .0489 0 •.137 i.-1/2
FD-8-16S 72.70 3 61.3 85.5 8.26 86 66,3 .0220 .0164 .0611 0.180 1-7/8
GD-7-12L 55.,45 3 36.1 68.1 0.70'- '90.5 60.3 .0270 .0163 .O~51 0.107 1-5/8
HD-8-1.6L 72.70 3- 61.7 90.3 2.08 90 68.0 .0280 .0236 .0869 0.170 1-7/8



TABLE 9

BOLTS INSTALLED IN STEEL PLATE

Bolt Number of Elong. at Computed % of Load Elong. Nut Rotation Nut Rotation
Lot Specimens 1/2 turn Load 'at at 1/2 turn after to Rupture, to Rupture

Tested of Nut, 1/2 turn from Table 7 Rupture, revs. from Table 8
inches of Nut, inches

kips

Be-8-llS 3 .0392 71.6 102 0.093 1 1-1/4

I BD-8-2S 3 .0286 89.5 106 0.070 .1 1

k BD-8-11S 3 .0386 82.0 113 0.097 1 1-3/8

~i ED-7-12S 3 .0346 ' 65.5 I. 110 0.117 1-1/8 1-3/8

{'"~\( \ FD-B-16S 3 .0282 83.0 107 .0.183 1-3/4 1-3/8

GD':7-12L 3 .0359 63~O (i92b

). 0.137 1-1/2 1-3/4
,~:",..,:=r"":-.\'"';'

rI-7-12S 5 .0286 60.5 113 0.096 1-1/4 1-1/4

~~~; LI-7-9S 5 .0229 57.3 . 114 0.100 1-1/2 1-5/8

'KK-7-2S. 5 .0248 59.5 106 0.060 7/8 1
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